Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ T /\ ~F /\ ~q /\ T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~F /\ ~q /\ T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~F /\ ~q /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.idempand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~F /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.notfalse
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.idempand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~F
logic.propositional.notfalse
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p
logic.propositional.notnot
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ((q /\ T) || ~(r /\ T)) /\ p
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ (q || ~(r /\ T)) /\ p
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ (q || ~r) /\ p
logic.propositional.andoveror
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ((q /\ p) || (~r /\ p))
logic.propositional.andoveror
~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ((p /\ q /\ p) || (p /\ ~r /\ p))
logic.propositional.andoveror
~~~~(p /\ ~q) /\ ~~T /\ ((~q /\ p /\ q /\ p) || (~q /\ p /\ ~r /\ p))