Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ p /\ ~q /\ ~F /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~q /\ ~F /\ ~~T /\ T
logic.propositional.idempand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~F /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~q /\ ~F /\ ~~T /\ T
logic.propositional.idempand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~F /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~F /\ ~~T /\ T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~F /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~F /\ ~~T
logic.propositional.notfalse
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ T /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~F /\ ~~T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~F /\ ~~T
logic.propositional.notfalse
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ T /\ ~~T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ ~~p /\ ~~~F /\ ~q /\ ~~T
logic.propositional.notnot
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~~~F /\ ~q /\ ~~T
logic.propositional.notnot
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~F /\ ~q /\ ~~T
logic.propositional.notfalse
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ T /\ ~q /\ ~~T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~q /\ ~~T
logic.propositional.notnot
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~q /\ T
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~q
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ ((q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~q
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ (q || ~(r /\ T)) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~q
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q /\ ~(T /\ ~p) /\ p /\ ~q
logic.propositional.truezeroand
~~~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q /\ ~~p /\ p /\ ~q
logic.propositional.notnot
~~~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q /\ p /\ p /\ ~q
logic.propositional.idempand
~~~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q /\ p /\ ~q
logic.propositional.idempand
~~~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
~~~~(p /\ ~q) /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))