Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ T /\ ((T /\ q) || ~r) /\ ~(~T /\ T) /\ T /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ ~(~T /\ T) /\ T /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ ~(~T /\ T) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.compland~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalse~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ T /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalse~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ T /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ ~~(p /\ ~q /\ T /\ T) /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnot~~T /\ ~~p /\ p /\ ~q /\ T /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.idempand~~T /\ ~~p /\ p /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnot~~T /\ ~~p /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempand~~T /\ ~~p /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ p /\ ~q /\ (q || ~r) /\ ~q /\ ~(T /\ ~~(~T /\ ~T)) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ p /\ ~q /\ (q || ~r) /\ ~q /\ ~~~(~T /\ ~T) /\ p /\ ~q
⇒ logic.propositional.notnot~~T /\ ~~p /\ p /\ ~q /\ (q || ~r) /\ ~q /\ ~(~T /\ ~T) /\ p /\ ~q
⇒ logic.propositional.idempand~~T /\ ~~p /\ p /\ ~q /\ (q || ~r) /\ ~q /\ ~~T /\ p /\ ~q
⇒ logic.propositional.notnot~~T /\ ~~p /\ p /\ ~q /\ (q || ~r) /\ ~q /\ T /\ p /\ ~q
⇒ logic.propositional.truezeroand~~T /\ ~~p /\ p /\ ~q /\ (q || ~r) /\ ~q /\ p /\ ~q
⇒ logic.propositional.andoveror~~T /\ ~~p /\ p /\ ~q /\ ((q /\ ~q) || (~r /\ ~q)) /\ p /\ ~q
⇒ logic.propositional.compland~~T /\ ~~p /\ p /\ ~q /\ (F || (~r /\ ~q)) /\ p /\ ~q
⇒ logic.propositional.falsezeroor~~T /\ ~~p /\ p /\ ~q /\ ~r /\ ~q /\ p /\ ~q