Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ T /\ ~F /\ T /\ ~q /\ ~~T /\ T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~F /\ T /\ ~q /\ ~~T /\ T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~F /\ ~q /\ ~~T /\ T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~F /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notfalse
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ T /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notnot
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ T /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notnot
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notnot
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ p /\ ~q /\ p /\ ~q /\ p
logic.propositional.idempand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ p /\ ~q /\ p
logic.propositional.idempand
~~T /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~q /\ p