Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~T /\ p /\ p /\ ~~p /\ ~~~F /\ ~F /\ ~q /\ ~q /\ T /\ ~F /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.idempand~~T /\ p /\ ~~p /\ ~~~F /\ ~F /\ ~q /\ ~q /\ T /\ ~F /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.idempand~~T /\ p /\ ~~p /\ ~~~F /\ ~F /\ ~q /\ T /\ ~F /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~~p /\ ~~~F /\ ~F /\ ~q /\ ~F /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notfalse~~T /\ p /\ ~~p /\ ~~~F /\ T /\ ~q /\ ~F /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~~p /\ ~~~F /\ ~q /\ ~F /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notfalse~~T /\ p /\ ~~p /\ ~~~F /\ ~q /\ T /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~~p /\ ~~~F /\ ~q /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnot~~T /\ p /\ p /\ ~~~F /\ ~q /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.idempand~~T /\ p /\ ~~~F /\ ~q /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnot~~T /\ p /\ ~F /\ ~q /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notfalse~~T /\ p /\ T /\ ~q /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~q /\ ~~p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnot~~T /\ p /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnot~~T /\ p /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnot~~T /\ p /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~q
⇒ logic.propositional.idempand~~T /\ p /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~q /\ p /\ ((q /\ T) || ~(r /\ T)) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~q /\ p /\ (q || ~(r /\ T)) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ~q /\ p /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoveror~~T /\ p /\ ~q /\ p /\ ((q /\ p) || (~r /\ p)) /\ ~q
⇒ logic.propositional.andoveror~~T /\ p /\ ~q /\ ((p /\ q /\ p) || (p /\ ~r /\ p)) /\ ~q
⇒ logic.propositional.andoveror~~T /\ p /\ ((~q /\ p /\ q /\ p) || (~q /\ p /\ ~r /\ p)) /\ ~q
⇒ logic.propositional.andoveror~~T /\ ((p /\ ~q /\ p /\ q /\ p) || (p /\ ~q /\ p /\ ~r /\ p)) /\ ~q
⇒ logic.propositional.andoveror~~T /\ ((p /\ ~q /\ p /\ q /\ p /\ ~q) || (p /\ ~q /\ p /\ ~r /\ p /\ ~q))