Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
~~T /\ T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F /\ ~q /\ p /\ ~F /\ T /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F /\ ~q /\ p /\ ~F /\ T /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F /\ ~q /\ p /\ ~F /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notfalse~~T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T /\ ~q /\ p /\ ~F /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~F /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notfalse~~T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ T /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroand~~T /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnotT /\ p /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.truezeroandp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~q /\ ~~p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnotp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.idempandp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnotp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~q
⇒ logic.propositional.notnotp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ p /\ ~q /\ ~q
⇒ logic.propositional.idempandp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ p /\ ~q
⇒ logic.propositional.idempandp /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ((q /\ T) || ~(r /\ T)) /\ ~q /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ (q || ~(r /\ T)) /\ ~q /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ (q || ~r) /\ ~q /\ p /\ ~q
⇒ logic.propositional.andoverorp /\ ((q /\ ~q) || (~r /\ ~q)) /\ p /\ ~q
⇒ logic.propositional.complandp /\ (F || (~r /\ ~q)) /\ p /\ ~q
⇒ logic.propositional.falsezeroorp /\ ~r /\ ~q /\ p /\ ~q