Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~T /\ ((T /\ q /\ T /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~F /\ ~q
logic.propositional.idempand
~~T /\ ((T /\ q /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~F /\ ~q
logic.propositional.idempand
~~T /\ ((T /\ q /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~F /\ ~q
logic.propositional.notfalse
~~T /\ ((T /\ q /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ T /\ ~q
logic.propositional.truezeroand
~~T /\ ((T /\ q /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.notfalse
~~T /\ ((q /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.notnot
~~T /\ ((q /\ p /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.idempand
~~T /\ ((q /\ p /\ ~q /\ ~~(p /\ ~q)) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.notnot
~~T /\ ((q /\ p /\ ~q /\ p /\ ~q) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.idempand
~~T /\ ((q /\ p /\ ~q) || (~r /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ p /\ ~q) || (~r /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ p /\ ~q) || (~r /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.notfalse
~~T /\ ((q /\ p /\ ~q) || (~r /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.truezeroand
~~T /\ ((q /\ p /\ ~q) || (~r /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.notnot
~~T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.idempand
~~T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q /\ ~~(p /\ ~q))) /\ p /\ ~q
logic.propositional.notnot
~~T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q /\ p /\ ~q)) /\ p /\ ~q
logic.propositional.idempand
~~T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q)) /\ p /\ ~q
logic.propositional.andoveror
~~T /\ ((q /\ p /\ ~q /\ p) || (~r /\ p /\ ~q /\ p)) /\ ~q
logic.propositional.andoveror
~~T /\ ((q /\ p /\ ~q /\ p /\ ~q) || (~r /\ p /\ ~q /\ p /\ ~q))
logic.propositional.idempand
~~T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q /\ p /\ ~q))
logic.propositional.idempand
~~T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))