Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~(~~p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q /\ T) /\ p /\ T /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~~p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q /\ T) /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.notfalse
~~(~~p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q /\ T) /\ p /\ ~~(p /\ ~q) /\ T /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~~p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q /\ T) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.notnot
~~(~~p /\ ~q) /\ T /\ ~q /\ ~~(p /\ ~q /\ T) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~~p /\ ~q) /\ ~q /\ ~~(p /\ ~q /\ T) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.notnot
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ T /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.idempand
~~(~~p /\ ~q) /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.notnot
~~(~~p /\ ~q) /\ ~q /\ p /\ p /\ ~q /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.idempand
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ ~~T /\ ((T /\ q) || ~r)
logic.propositional.notnot
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ (q || ~r)
logic.propositional.andoveror
~~(~~p /\ ~q) /\ ((~q /\ p /\ ~q /\ q) || (~q /\ p /\ ~q /\ ~r))
logic.propositional.compland
~~(~~p /\ ~q) /\ ((~q /\ p /\ F) || (~q /\ p /\ ~q /\ ~r))
logic.propositional.falsezeroand
~~(~~p /\ ~q) /\ (F || (~q /\ p /\ ~q /\ ~r))
logic.propositional.falsezeroor
~~(~~p /\ ~q) /\ ~q /\ p /\ ~q /\ ~r