Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~(~~p /\ ~q) /\ p /\ ~F /\ T /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ((T /\ T /\ q) || (T /\ ~r)) /\ T /\ T /\ T /\ ~q /\ ~~T
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ p /\ ~F /\ T /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ((T /\ T /\ q) || (T /\ ~r)) /\ T /\ T /\ ~q /\ ~~T
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ p /\ ~F /\ T /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ((T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ T /\ ((T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r)) /\ T /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.notfalse~~(~~p /\ ~q) /\ p /\ T /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~q /\ p /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ p /\ ~q /\ p /\ ~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ p /\ ~q /\ p /\ ~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ p /\ ~q /\ p /\ T /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~q /\ p /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ ~~T
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ ~q /\ T
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r)) /\ ~q
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~q /\ (q || (T /\ ~r)) /\ ~q
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ p /\ ~q /\ (q || ~r) /\ ~q
⇒ logic.propositional.andoveror~~(~~p /\ ~q) /\ p /\ ~q /\ ((q /\ ~q) || (~r /\ ~q))
⇒ logic.propositional.compland~~(~~p /\ ~q) /\ p /\ ~q /\ (F || (~r /\ ~q))
⇒ logic.propositional.falsezeroor~~(~~p /\ ~q) /\ p /\ ~q /\ ~r /\ ~q