Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ T /\ ~F /\ p /\ T /\ T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r))
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ T /\ ~F /\ p /\ T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ ~F /\ p /\ T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ ~F /\ p /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r))
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ ~F /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ T /\ q) || (T /\ ~r))
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ ~F /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.notfalse~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ~~T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ ~~~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ ~~~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ ~~(T /\ p /\ ~q) /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.notnot~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ T /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.idempand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ ((T /\ q) || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ (q || (T /\ ~r))
⇒ logic.propositional.truezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ (q || ~r)
⇒ logic.propositional.andoveror~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ((p /\ ~q /\ q) || (p /\ ~q /\ ~r))
⇒ logic.propositional.compland~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ ((p /\ F) || (p /\ ~q /\ ~r))
⇒ logic.propositional.falsezeroand~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ (F || (p /\ ~q /\ ~r))
⇒ logic.propositional.falsezeroor~~(~~p /\ ~q) /\ T /\ ~q /\ T /\ p /\ ~q /\ ~r