Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

~~(~q /\ p) /\ T /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~F /\ T /\ ~q /\ p /\ ~~T /\ ~q /\ T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~q /\ p) /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~F /\ T /\ ~q /\ p /\ ~~T /\ ~q /\ T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~q /\ p) /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~T /\ ~q /\ T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~q /\ p) /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.notfalse
~~(~q /\ p) /\ T /\ ~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~q /\ p) /\ ~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.notfalse
~~(~q /\ p) /\ ~~(p /\ ~q) /\ p /\ T /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(~q /\ p) /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ p /\ ~~(p /\ ~q) /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ p /\ p /\ ~q /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ~q /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ p /\ ~~T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ p /\ T /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ p /\ ~q /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ p /\ ~q /\ (q || ~r)
logic.propositional.andoveror
~q /\ p /\ ((~q /\ q) || (~q /\ ~r))
logic.propositional.compland
~q /\ p /\ (F || (~q /\ ~r))
logic.propositional.falsezeroor
~q /\ p /\ ~q /\ ~r