Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ T /\ T /\ p /\ ~~T /\ T /\ ~q /\ ~F
logic.propositional.idempand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ T /\ p /\ ~~T /\ T /\ ~q /\ ~F
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~~T /\ T /\ ~q /\ ~F
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~~T /\ ~q /\ ~F
logic.propositional.notfalse
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~~T /\ ~q /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ p /\ ~~T /\ ~q
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ T /\ ~q /\ p /\ ~~T /\ ~q
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~q /\ p /\ ~~T /\ ~q
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~q /\ p /\ T /\ ~q
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~~~(p /\ ~q) /\ ~q /\ p /\ ~q