Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~T /\ ~q /\ T /\ ~q /\ ~F /\ ~~T /\ T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~T /\ ~q /\ ~q /\ ~F /\ ~~T /\ T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.idempand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~T /\ ~q /\ ~F /\ ~~T /\ T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~T /\ ~q /\ ~F /\ ~~T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notfalse
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~T /\ ~q /\ T /\ ~~T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~~T /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ T /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~~~(p /\ ~q) /\ p
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ ~~(p /\ ~q) /\ p
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ p /\ ~q /\ p
logic.propositional.idempand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ ~q /\ p