Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ T /\ ~q /\ ~~T /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~T /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~T /\ ~q /\ ~~~~(p /\ ~q) /\ ~F /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~T /\ ~q /\ ~~~~(p /\ ~q) /\ ~F
logic.propositional.notfalse
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~T /\ ~q /\ ~~~~(p /\ ~q) /\ T
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~T /\ ~q /\ ~~~~(p /\ ~q)
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ T /\ ~q /\ ~~~~(p /\ ~q)
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~q /\ ~~~~(p /\ ~q)
logic.propositional.idempand
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~~~(p /\ ~q)
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q)
logic.propositional.notnot
~~(p /\ ~q) /\ ~~((T /\ q) || ~~~r) /\ p /\ ~~T /\ ~q /\ p /\ ~q