Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ T /\ T /\ p /\ ~q /\ ~F /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ T /\ p /\ ~q /\ ~F /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ p /\ ~q /\ ~F /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.notfalse~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ p /\ ~q /\ T /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ p /\ ~q /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.notnot~~(p /\ ~q) /\ ~F /\ ~q /\ T /\ p /\ ~q /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ ((T /\ p /\ ~~(p /\ ~q) /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ ((p /\ ~~(p /\ ~q) /\ T /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ ((p /\ ~~(p /\ ~q) /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.notnot~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ ((p /\ p /\ ~q /\ q) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.compland~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ ((p /\ p /\ F) || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.falsezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ (F || (T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r))
⇒ logic.propositional.falsezeroor~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ T /\ p /\ ~~(p /\ ~q) /\ T /\ ~r
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ p /\ ~~(p /\ ~q) /\ T /\ ~r
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~~(p /\ ~q) /\ T /\ ~r
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~r
⇒ logic.propositional.notnot~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ p /\ ~q /\ ~r
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~q /\ ~r