Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

~~(p /\ ~q) /\ ~F /\ ~q /\ T /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ T /\ ~q /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ T /\ ~q /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~F /\ ~q /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notfalse
~~(p /\ ~q) /\ T /\ ~q /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~q /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notnot
p /\ ~q /\ ~q /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.idempand
p /\ ~q /\ ~~T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notnot
p /\ ~q /\ T /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((~~(p /\ ~q) /\ ~F /\ T /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((~~(p /\ ~q) /\ ~F /\ p /\ T /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((~~(p /\ ~q) /\ ~F /\ p /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notfalse
p /\ ~q /\ ((~~(p /\ ~q) /\ T /\ p /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((~~(p /\ ~q) /\ p /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notnot
p /\ ~q /\ ((p /\ ~q /\ p /\ q) || (~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((p /\ ~q /\ p /\ q) || (~~(p /\ ~q) /\ ~F /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((p /\ ~q /\ p /\ q) || (~~(p /\ ~q) /\ ~F /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notfalse
p /\ ~q /\ ((p /\ ~q /\ p /\ q) || (~~(p /\ ~q) /\ T /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((p /\ ~q /\ p /\ q) || (~~(p /\ ~q) /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.notnot
p /\ ~q /\ ((p /\ ~q /\ p /\ q) || (p /\ ~q /\ p /\ ~r)) /\ ~q /\ p
logic.propositional.andoveror
p /\ ~q /\ ((p /\ ~q /\ p /\ q /\ ~q /\ p) || (p /\ ~q /\ p /\ ~r /\ ~q /\ p))
logic.propositional.compland
p /\ ~q /\ ((p /\ ~q /\ p /\ F /\ p) || (p /\ ~q /\ p /\ ~r /\ ~q /\ p))
logic.propositional.falsezeroand
p /\ ~q /\ ((p /\ ~q /\ p /\ F) || (p /\ ~q /\ p /\ ~r /\ ~q /\ p))
logic.propositional.falsezeroand
p /\ ~q /\ (F || (p /\ ~q /\ p /\ ~r /\ ~q /\ p))
logic.propositional.falsezeroor
p /\ ~q /\ p /\ ~q /\ p /\ ~r /\ ~q /\ p
logic.propositional.idempand
p /\ ~q /\ p /\ ~r /\ ~q /\ p