Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ p /\ ~q /\ ~F /\ T /\ T /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ ~F /\ T /\ T /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ ~F /\ T /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ ~F /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalse~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnot~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p /\ ~q