Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ ~F /\ p /\ T /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~q /\ ~F
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ ~F /\ p /\ T /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~F
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ ~F /\ p /\ T /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~F
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ ~F /\ p /\ ~~(p /\ ~q) /\ T /\ p /\ ~q /\ ~F
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ ~F /\ p /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~F
⇒ logic.propositional.notfalse~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ p /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~F
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~F
⇒ logic.propositional.notfalse~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ p /\ ~q /\ T
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ p /\ ~q
⇒ logic.propositional.notnot~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ T /\ p /\ ~~(p /\ ~q) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ p /\ ~q
⇒ logic.propositional.notnot~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ p /\ ~q
⇒ logic.propositional.idempand~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoveror~~(p /\ ~q) /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))