Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

~~((T /\ q) || ~~~r) /\ p /\ ~F /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ T /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.idempand
~~((T /\ q) || ~~~r) /\ p /\ ~F /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.truezeroand
~~((T /\ q) || ~~~r) /\ p /\ ~F /\ ~q /\ ~~~~(p /\ ~q) /\ T /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.truezeroand
~~((T /\ q) || ~~~r) /\ p /\ ~F /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.notfalse
~~((T /\ q) || ~~~r) /\ p /\ T /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.truezeroand
~~((T /\ q) || ~~~r) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.notnot
((T /\ q) || ~~~r) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.notnot
((T /\ q) || ~r) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.notnot
((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.idempand
((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~q
logic.propositional.notnot
((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ ~~T /\ ~q
logic.propositional.idempand
((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~q
logic.propositional.notnot
((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~q
logic.propositional.truezeroand
((T /\ q) || ~r) /\ p /\ ~q /\ ~q
logic.propositional.idempand
((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
(q || ~r) /\ p /\ ~q
logic.propositional.andoveror
((q /\ p) || (~r /\ p)) /\ ~q
logic.propositional.andoveror
(q /\ p /\ ~q) || (~r /\ p /\ ~q)