Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ T /\ ~~(p /\ ~q) /\ ~~T /\ T /\ ~q /\ T /\ ~F /\ ~F /\ p
⇒ logic.propositional.idempand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ T /\ ~~(p /\ ~q) /\ ~~T /\ T /\ ~q /\ T /\ ~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ T /\ ~q /\ T /\ ~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ T /\ ~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~F /\ p
⇒ logic.propositional.notfalse~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ p /\ ~q /\ ~~T /\ ~q /\ p
⇒ logic.propositional.idempand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q /\ p
⇒ logic.propositional.idempand~q /\ ~~~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ ~~~~(p /\ ~q) /\ (q || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.andoveror~q /\ ~~~~(p /\ ~q) /\ ((q /\ p) || (~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.andoveror~q /\ ~~~~(p /\ ~q) /\ ((q /\ p /\ ~q /\ p) || (~r /\ p /\ ~q /\ p))