Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ T /\ ~q /\ ~~p /\ ~F /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~q /\ ~~p /\ ~F /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F
⇒ logic.propositional.idempand~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~~p /\ ~F /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F
⇒ logic.propositional.notfalse~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~~p /\ T /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~F
⇒ logic.propositional.notfalse~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnot~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ p /\ ~~p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnot~q /\ ~~T /\ p /\ p /\ ~q /\ p /\ ~~p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempand~q /\ ~~T /\ p /\ ~q /\ p /\ ~~p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnot~q /\ ~~T /\ p /\ ~q /\ p /\ p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempand~q /\ ~~T /\ p /\ ~q /\ p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempand~q /\ ~~T /\ p /\ ~q /\ ~~p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnot~q /\ ~~T /\ p /\ ~q /\ p /\ ~~~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnot~q /\ ~~T /\ p /\ ~q /\ p /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notfalse~q /\ ~~T /\ p /\ ~q /\ p /\ T /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~q /\ p /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~q /\ p /\ ((q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~q /\ p /\ (q || ~(r /\ T))
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~q /\ p /\ (q || ~r)
⇒ logic.propositional.andoveror~q /\ ~~T /\ ((p /\ ~q /\ p /\ q) || (p /\ ~q /\ p /\ ~r))