Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
~q /\ ~~T /\ p /\ T /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ ~F /\ ~F /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.idempand~q /\ ~~T /\ p /\ T /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.notfalse~q /\ ~~T /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ T /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~~T /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.notnot~q /\ T /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ p /\ ~q /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.idempand~q /\ p /\ ~q /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.idempand~q /\ p /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ ~~p)) /\ ~~~F /\ p
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ p)) /\ ~~~F /\ p
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ p)) /\ ~F /\ p
⇒ logic.propositional.notfalse~q /\ p /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ p)) /\ T /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((T /\ q /\ T /\ ~~p) || (~(r /\ T) /\ p)) /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((q /\ T /\ ~~p) || (~(r /\ T) /\ p)) /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((q /\ ~~p) || (~(r /\ T) /\ p)) /\ p
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ ((q /\ p) || (~(r /\ T) /\ p)) /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((q /\ p) || (~r /\ p)) /\ p
⇒ logic.propositional.andoveror~q /\ p /\ ((~q /\ q /\ p) || (~q /\ ~r /\ p)) /\ p
⇒ logic.propositional.compland~q /\ p /\ ((F /\ p) || (~q /\ ~r /\ p)) /\ p
⇒ logic.propositional.falsezeroand~q /\ p /\ (F || (~q /\ ~r /\ p)) /\ p
⇒ logic.propositional.falsezeroor~q /\ p /\ ~q /\ ~r /\ p /\ p
⇒ logic.propositional.idempand~q /\ p /\ ~q /\ ~r /\ p