Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~F /\ ~F /\ ~~T /\ T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.idempand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~F /\ ~~T /\ T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.notfalse
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ T /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.notnot
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p
logic.propositional.notnot
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p
logic.propositional.idempand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~q /\ (q || ~r) /\ p
logic.propositional.andoveror
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~q /\ ((q /\ p) || (~r /\ p))
logic.propositional.andoveror
~q /\ ~~(p /\ ~q) /\ T /\ T /\ ((p /\ ~q /\ q /\ p) || (p /\ ~q /\ ~r /\ p))
logic.propositional.compland
~q /\ ~~(p /\ ~q) /\ T /\ T /\ ((p /\ F /\ p) || (p /\ ~q /\ ~r /\ p))
logic.propositional.falsezeroand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ ((p /\ F) || (p /\ ~q /\ ~r /\ p))
logic.propositional.falsezeroand
~q /\ ~~(p /\ ~q) /\ T /\ T /\ (F || (p /\ ~q /\ ~r /\ p))
logic.propositional.falsezeroor
~q /\ ~~(p /\ ~q) /\ T /\ T /\ p /\ ~q /\ ~r /\ p