Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ T /\ ~~T /\ ~~((T /\ q) || ~~~r) /\ T
⇒ logic.propositional.truezeroand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~~T /\ ~~((T /\ q) || ~~~r) /\ T
⇒ logic.propositional.idempand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~~((T /\ q) || ~~~r) /\ T
⇒ logic.propositional.truezeroand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.notfalse~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ T /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.truezeroand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.notnot~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ p /\ ~q /\ ~~T /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.idempand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ ~~T /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.notnot~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.truezeroand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ ~~((T /\ q) || ~~~r)
⇒ logic.propositional.notnot~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~~~r)
⇒ logic.propositional.notnot~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ (q || ~r)
⇒ logic.propositional.andoveror~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ((p /\ ~q /\ q) || (p /\ ~q /\ ~r))
⇒ logic.propositional.compland~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ ((p /\ F) || (p /\ ~q /\ ~r))
⇒ logic.propositional.falsezeroand~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ (F || (p /\ ~q /\ ~r))
⇒ logic.propositional.falsezeroor~q /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ ~r