Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ T /\ ~~~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ T /\ p /\ ~F
⇒ logic.propositional.truezeroand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ T /\ p /\ ~F
⇒ logic.propositional.truezeroand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~F /\ ~q /\ p /\ ~F
⇒ logic.propositional.notfalse~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ T /\ ~q /\ p /\ ~F
⇒ logic.propositional.truezeroand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ p /\ ~F
⇒ logic.propositional.notfalse~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ p /\ T
⇒ logic.propositional.truezeroand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~p /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~(p /\ ~q) /\ p /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ p /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempand~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p