Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
~q /\ ~F /\ ~~(p /\ ~q) /\ p /\ T /\ T /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~F /\ p
⇒ logic.propositional.idempand~q /\ ~F /\ ~~(p /\ ~q) /\ p /\ T /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~F /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ p
⇒ logic.propositional.notfalse~q /\ T /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ p
⇒ logic.propositional.truezeroand~q /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ p
⇒ logic.propositional.notfalse~q /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroand~q /\ ~~(p /\ ~q) /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.idempand~q /\ p /\ ~~T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ p /\ T /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ((T /\ q /\ T) || (~r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.notnot~q /\ p /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ ~q /\ p
⇒ logic.propositional.idempand~q /\ p /\ ((T /\ q /\ T) || (~r /\ T)) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ ((q /\ T) || (~r /\ T)) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ (q || (~r /\ T)) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ p /\ (q || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.andoveror~q /\ p /\ ((q /\ p) || (~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.andoveror~q /\ ((p /\ q /\ p) || (p /\ ~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.andoveror((~q /\ p /\ q /\ p) || (~q /\ p /\ ~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.andoveror(~q /\ p /\ q /\ p /\ ~q /\ p) || (~q /\ p /\ ~r /\ p /\ ~q /\ p)