Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~~T /\ T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.notfalse~q /\ T /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ p /\ ~~(p /\ ~q) /\ ~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.notfalse~q /\ p /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ p /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.idempand~q /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.notnot~q /\ p /\ p /\ ~q /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.idempand~q /\ p /\ ~q /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.idempand~q /\ p /\ ~q /\ ~~T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.notnot~q /\ p /\ ~q /\ T /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((T /\ q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((q /\ T /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((q /\ p) || (~r /\ T /\ p))
⇒ logic.propositional.truezeroand~q /\ p /\ ~q /\ ((q /\ p) || (~r /\ p))
⇒ logic.propositional.andoveror(~q /\ p /\ ~q /\ q /\ p) || (~q /\ p /\ ~q /\ ~r /\ p)
⇒ logic.propositional.compland(~q /\ p /\ F /\ p) || (~q /\ p /\ ~q /\ ~r /\ p)
⇒ logic.propositional.falsezeroand(~q /\ p /\ F) || (~q /\ p /\ ~q /\ ~r /\ p)
⇒ logic.propositional.falsezeroandF || (~q /\ p /\ ~q /\ ~r /\ p)
⇒ logic.propositional.falsezeroor~q /\ p /\ ~q /\ ~r /\ p