Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ T /\ ~F /\ ~q /\ T /\ p /\ p /\ ~~(p /\ T /\ ~q) /\ T
⇒ logic.propositional.idempand~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ T /\ ~F /\ ~q /\ T /\ p /\ ~~(p /\ T /\ ~q) /\ T
⇒ logic.propositional.truezeroand~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ T /\ p /\ ~~(p /\ T /\ ~q) /\ T
⇒ logic.propositional.truezeroand~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~~(p /\ T /\ ~q) /\ T
⇒ logic.propositional.truezeroand~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.notfalse~q /\ T /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.notfalse~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ T /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ T /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.idempand~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~~(p /\ T /\ ~q)
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ p /\ T /\ ~q
⇒ logic.propositional.idempand~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ T /\ ~q
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempand~q /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroand~q /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoveror~q /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))