Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ T /\ ~F /\ T /\ T /\ T /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempand~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ T /\ ~F /\ T /\ T /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempand~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ T /\ ~F /\ T /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ ~F /\ T /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~F /\ ~~(p /\ ~q) /\ ~F /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.notfalse~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.notfalse~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ T /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.notnot~q /\ p /\ p /\ ~q /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.notnot~q /\ p /\ p /\ ~q /\ T /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ p /\ p /\ ~q /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempand~q /\ p /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.notnot~q /\ p /\ p /\ ~q /\ p /\ ~q /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.idempand~q /\ p /\ p /\ ~q /\ p /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroand~q /\ p /\ p /\ ~q /\ p /\ (q || ~r)
⇒ logic.propositional.andoveror~q /\ p /\ p /\ ~q /\ ((p /\ q) || (p /\ ~r))
⇒ logic.propositional.andoveror~q /\ p /\ ((p /\ ~q /\ p /\ q) || (p /\ ~q /\ p /\ ~r))