Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

~q /\ T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ T /\ ~~(p /\ ~q) /\ ~F /\ ~F /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.idempand
~q /\ T /\ ~~(p /\ ~q) /\ ~~T /\ p /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ T /\ ~~(p /\ ~q) /\ ~F /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ p /\ T /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ ~F /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.notfalse
~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ T /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.truezeroand
~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.notnot
~q /\ p /\ ~q /\ ~~T /\ p /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.notnot
~q /\ p /\ ~q /\ T /\ p /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.truezeroand
~q /\ p /\ ~q /\ p /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.idempand
~q /\ p /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.notnot
~q /\ p /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.idempand
~q /\ p /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.idempand
~q /\ p /\ ((T /\ q) || ~r) /\ ~q
logic.propositional.truezeroand
~q /\ p /\ (q || ~r) /\ ~q
logic.propositional.andoveror
~q /\ p /\ ((q /\ ~q) || (~r /\ ~q))
logic.propositional.compland
~q /\ p /\ (F || (~r /\ ~q))
logic.propositional.falsezeroor
~q /\ p /\ ~r /\ ~q