Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

Final term is not finished
~q /\ T /\ T /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.idempand
~q /\ T /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.idempand
~q /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.truezeroand
~q /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.truezeroand
~q /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.notfalse
~q /\ ~q /\ ~~(p /\ ~q) /\ T /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.truezeroand
~q /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~F
logic.propositional.notfalse
~q /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~q /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ ~q /\ p /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ ~q /\ p /\ p /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ ~q /\ p /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
~q /\ ~q /\ p /\ ~q /\ T /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ ~q /\ p /\ ~q /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
~q /\ ~q /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~q /\ ~q /\ p /\ (q || ~r)
logic.propositional.andoveror
~q /\ ((~q /\ p /\ q) || (~q /\ p /\ ~r))