Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ ~~T /\ T /\ ~q /\ ~~T /\ T /\ p /\ ~F /\ T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ T /\ p /\ ~F /\ T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ p /\ ~F /\ T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ p /\ ~F
⇒ logic.propositional.notfalse~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ p /\ T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q) /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ ~~T /\ ~q /\ ~~T /\ p
⇒ logic.propositional.idempand~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~q /\ ~~T /\ p
⇒ logic.propositional.idempand~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnot~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroand~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p