Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~F /\ ~~T /\ T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ T /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ T
⇒ logic.propositional.idempand~F /\ ~~T /\ T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ T
⇒ logic.propositional.truezeroand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ T
⇒ logic.propositional.truezeroand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p /\ T
⇒ logic.propositional.truezeroand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ ~q /\ p
⇒ logic.propositional.notfalse~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ T /\ ~q /\ p
⇒ logic.propositional.truezeroand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.idempand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~~(p /\ ~q) /\ ~q /\ p
⇒ logic.propositional.notnot~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ p /\ ~q /\ ~q /\ p
⇒ logic.propositional.idempand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~q /\ p
⇒ logic.propositional.idempand~F /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~F /\ ~~T /\ (q || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.andoveror~F /\ ~~T /\ ((q /\ p) || (~r /\ p)) /\ ~q /\ p
⇒ logic.propositional.andoveror~F /\ ~~T /\ ((q /\ p /\ ~q /\ p) || (~r /\ p /\ ~q /\ p))