Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ T /\ ~~~~(p /\ ~q) /\ T /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ T /\ ~~T
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ T /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ T /\ ~~T
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ T /\ ~~T
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notfalseT /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroand~~(p /\ ~q) /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ~~~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ((T /\ q) || ~r) /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ (q || ~r) /\ ~q
⇒ logic.propositional.andoverorp /\ ~q /\ p /\ ((q /\ ~q) || (~r /\ ~q))
⇒ logic.propositional.complandp /\ ~q /\ p /\ (F || (~r /\ ~q))
⇒ logic.propositional.falsezeroorp /\ ~q /\ p /\ ~r /\ ~q