Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ T /\ ~q /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ T
⇒ logic.propositional.idempand~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ T /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ ~q /\ ~~T /\ ~~~~(p /\ ~q) /\ T
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ ~~T /\ p /\ ~q /\ ~~T /\ ~~~~(p /\ ~q)
⇒ logic.propositional.notnot~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ T /\ p /\ ~q /\ ~~T /\ ~~~~(p /\ ~q)
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~~~~(p /\ ~q)
⇒ logic.propositional.notnot~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~~~~(p /\ ~q)
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~~~(p /\ ~q)
⇒ logic.propositional.notnot~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnot~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempand~F /\ ~~(p /\ ~q) /\ p /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroand~F /\ ~~(p /\ ~q) /\ p /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoveror~F /\ ~~(p /\ ~q) /\ p /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))