Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

~F /\ ~~(p /\ ~q) /\ T /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~q /\ ~~T /\ p /\ p /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T
logic.propositional.idempand
~F /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~q /\ ~~T /\ p /\ p /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T
logic.propositional.idempand
~F /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ p /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T
logic.propositional.idempand
~F /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~F /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T
logic.propositional.idempand
~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ ((T /\ q) || ~r) /\ T
logic.propositional.truezeroand
~F /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ ((T /\ q) || ~r)
logic.propositional.notfalse
T /\ ~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ~F /\ ((T /\ q) || ~r)
logic.propositional.notfalse
~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ T /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
~~(p /\ ~q) /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
p /\ ~q /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.idempand
p /\ ~q /\ ~~T /\ p /\ ((T /\ q) || ~r)
logic.propositional.notnot
p /\ ~q /\ T /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
p /\ ~q /\ p /\ ((T /\ q) || ~r)
logic.propositional.truezeroand
p /\ ~q /\ p /\ (q || ~r)
logic.propositional.andoveror
p /\ ~q /\ ((p /\ q) || (p /\ ~r))
logic.propositional.andoveror
(p /\ ~q /\ p /\ q) || (p /\ ~q /\ p /\ ~r)