Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
~F /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ T /\ T /\ p /\ ~F /\ ~~T
⇒ logic.propositional.idempand~F /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ T /\ p /\ ~F /\ ~~T
⇒ logic.propositional.truezeroand~F /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ p /\ ~F /\ ~~T
⇒ logic.propositional.notfalseT /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ p /\ ~F /\ ~~T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ p /\ ~F /\ ~~T
⇒ logic.propositional.notfalse~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ p /\ T /\ ~~T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p /\ p /\ ~~T
⇒ logic.propositional.notnot~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~~p /\ p /\ ~~T
⇒ logic.propositional.notnot~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ p /\ ~q /\ ~q /\ ~~p /\ p /\ ~~T
⇒ logic.propositional.idempand~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~q /\ ~~p /\ p /\ ~~T
⇒ logic.propositional.idempand~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~~p /\ p /\ ~~T
⇒ logic.propositional.notnot~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p /\ p /\ ~~T
⇒ logic.propositional.idempand~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p /\ ~~T
⇒ logic.propositional.notnot~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p /\ T
⇒ logic.propositional.truezeroand~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ ((q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ (q || ~(r /\ T)) /\ p /\ ~q /\ p
⇒ logic.propositional.truezeroand~q /\ (q || ~r) /\ p /\ ~q /\ p
⇒ logic.propositional.andoveror~q /\ ((q /\ p /\ ~q /\ p) || (~r /\ p /\ ~q /\ p))
⇒ logic.propositional.andoveror(~q /\ q /\ p /\ ~q /\ p) || (~q /\ ~r /\ p /\ ~q /\ p)
⇒ logic.propositional.compland(F /\ p /\ ~q /\ p) || (~q /\ ~r /\ p /\ ~q /\ p)
⇒ logic.propositional.falsezeroandF || (~q /\ ~r /\ p /\ ~q /\ p)
⇒ logic.propositional.falsezeroor~q /\ ~r /\ p /\ ~q /\ p