Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

~F /\ p /\ T /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ T /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.idempand
~F /\ p /\ T /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
~F /\ p /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.idempand
~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notfalse
T /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ T /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
p /\ ((~q /\ q) || (~q /\ ~r)) /\ p /\ ~q
logic.propositional.compland
p /\ (F || (~q /\ ~r)) /\ p /\ ~q
logic.propositional.falsezeroor
p /\ ~q /\ ~r /\ p /\ ~q