Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ T /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ T /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~F /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalse~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnot~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroand~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.idempand~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnot~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempand~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroand~F /\ T /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoveror~F /\ T /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))