Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ ~~p /\ ~q /\ ~q /\ ~F /\ T /\ ~~T /\ p /\ ~F /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~(F /\ T) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandp /\ ~~p /\ ~q /\ ~F /\ T /\ ~~T /\ p /\ ~F /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~(F /\ T) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ ~F /\ ~~T /\ p /\ ~F /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~(F /\ T) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.falsezeroandp /\ ~~p /\ ~q /\ ~F /\ ~~T /\ p /\ ~F /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notfalsep /\ ~~p /\ ~q /\ T /\ ~~T /\ p /\ ~F /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ ~~T /\ p /\ ~F /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notfalsep /\ ~~p /\ ~q /\ ~~T /\ p /\ T /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ ~~T /\ p /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notfalsep /\ ~~p /\ ~q /\ ~~T /\ p /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ T /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ ~~T /\ p /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ ~~p /\ ~q /\ T /\ p /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ p /\ ~q /\ ~(T /\ ~~~(p /\ ~q)) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ p /\ ~q /\ ~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ ~~p /\ ~q /\ p /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.notnotp /\ ~~p /\ ~q /\ p /\ ~q /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.idempandp /\ ~~p /\ ~q /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ p /\ ~q /\ ((q /\ T) || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ p /\ ~q /\ (q || ~(r /\ T))
⇒ logic.propositional.truezeroandp /\ ~~p /\ ~q /\ p /\ ~q /\ (q || ~r)
⇒ logic.propositional.andoverorp /\ ~~p /\ ~q /\ p /\ ((~q /\ q) || (~q /\ ~r))
⇒ logic.propositional.complandp /\ ~~p /\ ~q /\ p /\ (F || (~q /\ ~r))
⇒ logic.propositional.falsezeroorp /\ ~~p /\ ~q /\ p /\ ~q /\ ~r