Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

p /\ ~~T /\ ~F /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~q /\ T /\ T /\ T /\ ~~(p /\ ~q) /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ~~T /\ ~F /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~q /\ T /\ T /\ T /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ~~T /\ ~F /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ T /\ T /\ T /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ~~T /\ ~F /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ T /\ T /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ~~T /\ ~F /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~~T /\ ~F /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~~T /\ ~F /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ ~~T /\ T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ T /\ ~q /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~~T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ T /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ p /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q
logic.propositional.truezeroand
p /\ (q || ~r) /\ ~q /\ p /\ ~q
logic.propositional.andoveror
p /\ ((q /\ ~q /\ p /\ ~q) || (~r /\ ~q /\ p /\ ~q))
logic.propositional.compland
p /\ ((F /\ p /\ ~q) || (~r /\ ~q /\ p /\ ~q))
logic.propositional.falsezeroand
p /\ (F || (~r /\ ~q /\ p /\ ~q))
logic.propositional.falsezeroor
p /\ ~r /\ ~q /\ p /\ ~q