Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p /\ ~F /\ T /\ ~q /\ ~q /\ T /\ T /\ ~~(p /\ ~q) /\ ~~(p /\ ~q)
⇒ logic.propositional.idempandp /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p /\ ~F /\ T /\ ~q /\ ~q /\ T /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.idempandp /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p /\ ~F /\ T /\ ~q /\ T /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.idempandp /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ T /\ p /\ ~F /\ T /\ ~q /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~F /\ T /\ ~q /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~F /\ ~q /\ T /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~~T /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalsep /\ ~~T /\ ((T /\ q) || ~r) /\ T /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~F /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notfalsep /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ T /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.truezeroandp /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q)
⇒ logic.propositional.notnotp /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q
⇒ logic.propositional.idempandp /\ ~~T /\ ((T /\ q) || ~r) /\ p /\ ~q