Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ T /\ T /\ ~F /\ ~q /\ p
⇒ logic.propositional.idempandp /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ T /\ ~F /\ ~q /\ p
⇒ logic.propositional.idempandp /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ ~F /\ ~q /\ p
⇒ logic.propositional.truezeroandp /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ ~F /\ ~q /\ p
⇒ logic.propositional.truezeroandp /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T /\ ~F /\ ~q /\ p
⇒ logic.propositional.notfalsep /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~~T /\ ~F /\ ~q /\ p
⇒ logic.propositional.truezeroandp /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~F /\ ~q /\ p
⇒ logic.propositional.notfalsep /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ T /\ ~q /\ p
⇒ logic.propositional.truezeroandp /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p
⇒ logic.propositional.notnotp /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p
⇒ logic.propositional.idempandp /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~T /\ ~q /\ p
⇒ logic.propositional.notnotp /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~q /\ p
⇒ logic.propositional.truezeroandp /\ ~~(p /\ ~q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p
⇒ logic.propositional.truezeroandp /\ ~~(p /\ ~q) /\ p /\ ~q /\ (q || ~r) /\ ~q /\ p
⇒ logic.propositional.andoverorp /\ ~~(p /\ ~q) /\ p /\ ((~q /\ q) || (~q /\ ~r)) /\ ~q /\ p
⇒ logic.propositional.complandp /\ ~~(p /\ ~q) /\ p /\ (F || (~q /\ ~r)) /\ ~q /\ p
⇒ logic.propositional.falsezeroorp /\ ~~(p /\ ~q) /\ p /\ ~q /\ ~r /\ ~q /\ p