Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
p /\ ~q /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ T /\ ~q /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ T /\ ((T /\ q) || ~r) /\ T /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ T /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ ~F /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.notfalsep /\ ~q /\ T /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~q /\ ~F /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.notfalsep /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~q /\ T /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~~(p /\ ~q) /\ ~q /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ p /\ ~q /\ ~q /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ p /\ ~q /\ ~q /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r)
⇒ logic.propositional.truezeroandp /\ ~q /\ p /\ ~q /\ (q || ~r)
⇒ logic.propositional.andoverorp /\ ~q /\ p /\ ((~q /\ q) || (~q /\ ~r))
⇒ logic.propositional.complandp /\ ~q /\ p /\ (F || (~q /\ ~r))
⇒ logic.propositional.falsezeroorp /\ ~q /\ p /\ ~q /\ ~r