Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ~~T /\ T
⇒ logic.propositional.idempandp /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q) /\ T /\ ~~(p /\ ~q) /\ ~~T /\ T
⇒ logic.propositional.idempandp /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ T /\ ~~(p /\ ~q) /\ ~~T /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T
⇒ logic.propositional.notfalsep /\ ~q /\ ((T /\ q) || ~r) /\ T /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~(p /\ ~q) /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ p /\ ~q /\ ~~T
⇒ logic.propositional.idempandp /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ ~~T
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoverorp /\ ~q /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))