Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~F /\ T /\ T /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.idempandp /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ T /\ T /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.idempandp /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ T /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.idempandp /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ~F /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.notfalsep /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ T /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ~F /\ ~~T /\ ~q /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.notnotp /\ ~F /\ ~~T /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
⇒ logic.propositional.truezeroandp /\ ~F /\ ~~T /\ ~q /\ p /\ ~q /\ (q || ~r) /\ p /\ ~q
⇒ logic.propositional.andoverorp /\ ~F /\ ~~T /\ ~q /\ p /\ ~q /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))
⇒ logic.propositional.andoverorp /\ ~F /\ ~~T /\ ~q /\ ((p /\ ~q /\ q /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q))
⇒ logic.propositional.complandp /\ ~F /\ ~~T /\ ~q /\ ((p /\ F /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q))
⇒ logic.propositional.falsezeroandp /\ ~F /\ ~~T /\ ~q /\ ((p /\ F) || (p /\ ~q /\ ~r /\ p /\ ~q))
⇒ logic.propositional.falsezeroandp /\ ~F /\ ~~T /\ ~q /\ (F || (p /\ ~q /\ ~r /\ p /\ ~q))
⇒ logic.propositional.falsezeroorp /\ ~F /\ ~~T /\ ~q /\ p /\ ~q /\ ~r /\ p /\ ~q