Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

p /\ ~F /\ p /\ ~F /\ ~~T /\ T /\ ~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.idempand
p /\ ~F /\ ~~T /\ T /\ ~q /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.idempand
p /\ ~F /\ ~~T /\ T /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.truezeroand
p /\ ~F /\ ~~T /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ T /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.truezeroand
p /\ ~F /\ ~~T /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.notfalse
p /\ T /\ ~~T /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.truezeroand
p /\ ~~T /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.notnot
p /\ T /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.truezeroand
p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.notnot
p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~~(p /\ ~q) /\ ~q /\ ~~p
logic.propositional.notnot
p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~q /\ ~~p
logic.propositional.idempand
p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ ~~p
logic.propositional.notnot
p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ ((q /\ T) || ~(r /\ T)) /\ p /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ (q || ~(r /\ T)) /\ p /\ ~q /\ p
logic.propositional.truezeroand
p /\ ~q /\ (q || ~r) /\ p /\ ~q /\ p
logic.propositional.andoveror
p /\ ~q /\ ((q /\ p) || (~r /\ p)) /\ ~q /\ p
logic.propositional.andoveror
p /\ ((~q /\ q /\ p) || (~q /\ ~r /\ p)) /\ ~q /\ p
logic.propositional.compland
p /\ ((F /\ p) || (~q /\ ~r /\ p)) /\ ~q /\ p
logic.propositional.falsezeroand
p /\ (F || (~q /\ ~r /\ p)) /\ ~q /\ p
logic.propositional.falsezeroor
p /\ ~q /\ ~r /\ p /\ ~q /\ p