Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
p /\ T /\ ~q /\ ~~p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F /\ ~F
⇒ logic.propositional.truezeroandp /\ ~q /\ ~~p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ~F /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F /\ ~F
⇒ logic.propositional.notfalsep /\ ~q /\ ~~p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ T /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F /\ ~F
⇒ logic.propositional.truezeroandp /\ ~q /\ ~~p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F /\ ~F
⇒ logic.propositional.notfalsep /\ ~q /\ ~~p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ ~~p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.idempandp /\ ~q /\ p /\ ~~~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.notnotp /\ ~q /\ p /\ ~~(p /\ ~q) /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.notnotp /\ ~q /\ p /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.idempandp /\ ~q /\ p /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.idempandp /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~T /\ ~~~F
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ T /\ ~~~F
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~~~F
⇒ logic.propositional.notnotp /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ ~F
⇒ logic.propositional.notfalsep /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q /\ T
⇒ logic.propositional.truezeroandp /\ ~q /\ ((T /\ q /\ T) || ~(r /\ T)) /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ ((q /\ T) || ~(r /\ T)) /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~(r /\ T)) /\ ~q
⇒ logic.propositional.truezeroandp /\ ~q /\ (q || ~r) /\ ~q
⇒ logic.propositional.andoverorp /\ ~q /\ ((q /\ ~q) || (~r /\ ~q))
⇒ logic.propositional.complandp /\ ~q /\ (F || (~r /\ ~q))
⇒ logic.propositional.falsezeroorp /\ ~q /\ ~r /\ ~q