Exercise logic.propositional.dnf
Description
Proposition to DNF
Derivation
Final term is not finished
p /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~F
⇒ logic.propositional.idempandp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~F
⇒ logic.propositional.truezeroandp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~F /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~F
⇒ logic.propositional.notfalsep /\ T /\ ~q /\ ((T /\ q) || ~r) /\ T /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~F
⇒ logic.propositional.truezeroandp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ ~F
⇒ logic.propositional.notfalsep /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p /\ T
⇒ logic.propositional.truezeroandp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ ~~(p /\ ~q) /\ ~~T /\ p
⇒ logic.propositional.notnotp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ ~~T /\ p
⇒ logic.propositional.notnotp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ T /\ p
⇒ logic.propositional.truezeroandp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p /\ ~q /\ p
⇒ logic.propositional.idempandp /\ T /\ ~q /\ ((T /\ q) || ~r) /\ ~q /\ p