Exercise logic.propositional.dnf

Description
Proposition to DNF

Derivation

p /\ T /\ ~F /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ T /\ ~~(p /\ ~q) /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ T /\ ~F /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ T /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ T /\ ~F /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~F /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~F /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ T /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~F /\ ~~(p /\ ~q)
logic.propositional.notfalse
p /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ T /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~~T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ T /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
logic.propositional.truezeroand
p /\ ~q /\ ~(T /\ q) /\ p /\ ~~(p /\ ~q) /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ~(T /\ q) /\ p /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
logic.propositional.idempand
p /\ ~q /\ ~(T /\ q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ ~~(p /\ ~q)
logic.propositional.notnot
p /\ ~q /\ ~(T /\ q) /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.idempand
p /\ ~q /\ ((T /\ q) || ~r) /\ p /\ ~q
logic.propositional.truezeroand
p /\ ~q /\ (q || ~r) /\ p /\ ~q
logic.propositional.andoveror
p /\ ~q /\ ((q /\ p /\ ~q) || (~r /\ p /\ ~q))
logic.propositional.andoveror
(p /\ ~q /\ q /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.compland
(p /\ F /\ p /\ ~q) || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.falsezeroand
(p /\ F) || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.falsezeroand
F || (p /\ ~q /\ ~r /\ p /\ ~q)
logic.propositional.falsezeroor
p /\ ~q /\ ~r /\ p /\ ~q